

Master's Thesis: Censorship-resistant Collaboration with a Hybrid DTN/P2P Network

Philipp Hagemeister

Institut für Informatik Heinrich-Heine-Universität Düsseldorf

29.3.2012

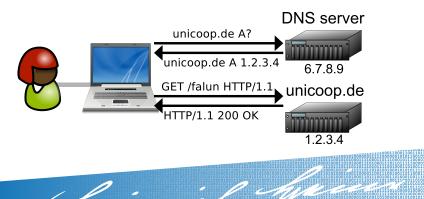
otiv	

Demo

Threat Model

- Collaboration systems proliferate free speech
- Attacker does not want free speech
- \Rightarrow Attacker goal: Disrupt collaboration systems
- Attacker controls ISP and national infrastructure

Figure: Attacker (representation)



Demo

Requests in Current Collaboration Systems

- adhocracy, echo, LiquidFeedback, UniCoop are web applications
- Request diagram:

Motivation	P2P	DTN	Architecture	Demo	hainvif finn
DNS Censor	ship				HEINRICH HEINE UNIVERSITÄT DÜSSELDORF

- Attacker controls default DNS server
- Contemplated in Germany and US
- Used in Belgium, Denmark, Italy, Turkey, Burma, China, ...
- Easily circumvented (→ Allessandro Lenzen, 2011)
- Long-term solution: client-side DNSSec

nitecture

Demo

- Attacker can drops packets from or to specific IP addresses
- Used in China, Egypt, Libya, Pakistan, Thailand

Demo

Deep Packet Inspection

- Attacker filters packets for search terms
- Used in China, Iran
- Prevented by encryption

- Attacker physically seizes or takes over server
- Happened in Germany!
 - In 2011, servers of the Piratenpartei were confiscated
- Defense: Multiple servers

Demo

Peer-To-Peer (P2P) Networks

- · Multiple servers alone are not sufficient
- Eliminate all single points of failure!
- We need a truly decentralized system
- ... a Peer-to-peer (P2P) network

Иo		

Demo

Bootstrapping

How do we get the address of a peer?

Иo		

P2P

Architecture

Demo

Bootstrapping

How do we get the address of a peer?

Ø

- Hardcoded
- Human input

Мo		

Demo

Bootstrapping

How do we get the address of a peer?

- Hardcoded
- Human input
- DNS
- HTTP(S)

	on

Demo

Bootstrapping

How do we get the address of a peer?

- Hardcoded
- Human input
- DNS
- HTTP(S)
- IP multicast

	on

Demo

Bootstrapping

How do we get the address of a peer?

- Hardcoded
- Human input
- DNS
- HTTP(S)
- IP multicast
- Email / SMS

	on

Demo

Bootstrapping

How do we get the address of a peer?

- Hardcoded
- Human input
- DNS
- HTTP(S)
- IP multicast
- Email / SMS
- Decoy routing

	on

Demo

Bootstrapping

How do we get the address of a peer?

- Hardcoded
- Human input
- DNS
- HTTP(S)
- IP multicast
- Email / SMS
- Decoy routing

Bootstrapping: Solvable

The number of bootstrapping schemes allow us to evade all but the most sophisticated censorship systems.

	on

Demo

Other P2P considerations

- Structured vs unstructured
- Sybil and other active attacks
- Broadcasting
- NAT traversal

	on

P2P

Demo

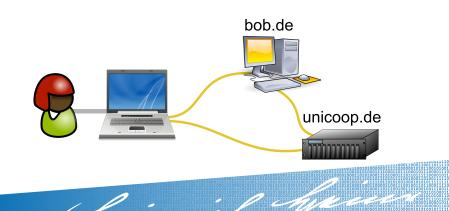
Other P2P considerations

- Structured vs unstructured
- Sybil and other active attacks
- Broadcasting
- NAT traversal
- Privacy
 - Solved by anonymization networks
 - Examples: I2P, Tor, Freenet
 - Need to be integrated
 - → Paul Baade

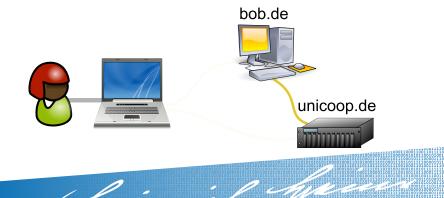
P2P: Conclusion

A P2P network can provide an adequate defense against censorship.

DTN


Architecture

Demo


Back to the Threat Model

P2P

- Attacker can turn off Internet access
- Happened in 2011 in Egypt and Libya
- Arguably permanently in Cuba and North Korea

- Transfer data with USB thumb drives
- Delay-Tolerant Networks (DTNs) do not require continuous connection
- Fields of use:
 - Interplanetary communication
 - Developing nations
 - Military/naval
 - Sneakernet in Cuba

DTNs allow communication even in the case of a Internet shutoff

- Challenge in DTNs: Distributed consensus is not possible
- Nevertheless, we want want revision control
 - ... primarily for history, accountability, and change management

- Challenge in DTNs: Distributed consensus is not possible
- Nevertheless, we want want revision control
 - ... primarily for history, accountability, and change management
- · Graph-based revision control systems: git, mercurial, bazaar, PlatinVC
 - Need to be adapted for DTNs (\rightarrow Janine Haas, 2012)

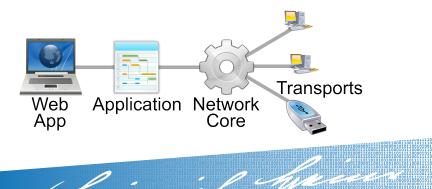
- Challenge in DTNs: Distributed consensus is not possible
- Nevertheless, we want want revision control
 - ... primarily for history, accountability, and change management
- · Graph-based revision control systems: git, mercurial, bazaar, PlatinVC
 - Need to be adapted for DTNs (\rightarrow Janine Haas, 2012)
- Patch-based revision control systems: darcs
 - Complex, not yet practical
 - Could be the silver bullet

- Challenge in DTNs: Distributed consensus is not possible
- Nevertheless, we want want revision control
 - ... primarily for history, accountability, and change management
- · Graph-based revision control systems: git, mercurial, bazaar, PlatinVC
 - Need to be adapted for DTNs (\rightarrow Janine Haas, 2012)
- Patch-based revision control systems: darcs
 - Complex, not yet practical
 - Could be the silver bullet
- Document-oriented revision control: CouchDB, MongoDB
 - Simple, but weak guarantees

- Challenge in DTNs: Distributed consensus is not possible
- Nevertheless, we want want revision control
 - ... primarily for history, accountability, and change management
- · Graph-based revision control systems: git, mercurial, bazaar, PlatinVC
 - Need to be adapted for DTNs (\rightarrow Janine Haas, 2012)
- Patch-based revision control systems: darcs
 - Complex, not yet practical
 - Could be the silver bullet
- Document-oriented revision control: CouchDB, MongoDB
 - Simple, but weak guarantees
- Common base technology: Content-Adressable Storage(CAS)
 - Stores a set of bytes, accessed with hash(bytes).
 - No conflicts, $sync(CAS1, CAS2) = CAS1 \cup CAS2$
 - · Can store (almost) all of the revision control system data

	on

C



Demo

Architecture

- Transports abstract the specific communication channel
 - P2P over TCP
 - DTN over USB thumb drive
 - P2P over anonymization network
 - DTN over facebook
- Requirement: Application should be available on every device
 - \Rightarrow web application

Demo

Web Application Fallback

- Best experience (DTN) if system is locally installed
- Public web servers for the masses
- If a web server becomes unavailable, switch to another one

Demo

Heinrich Heine UNIVERSITÄT DÜSSELDORF

Web Application Fallback

- · Best experience (DTN) if system is locally installed
- Public web servers for the masses
- If a web server becomes unavailable, switch to another one
- Alternative: Continue working offline (\rightarrow Tim van Cleef)
- · Future: Whole application in the browser

	/ation

DTN

Architecture

Demo

Conclusion

- · Censorship resistance is important for collaboration software
- Censorship-resistant P2P network
- In case of total shutoff: DTN
- · Future reasearch and implementation required

Motivation

.

DTN

Architecture

Demo

Questions?

Questions?

This presentation: http://phihag.de/2012/mtpres.pdf Thesis: http://phihag.de/2012/mt.pdf Source code: http://phihag.de/2012/d2p/

18 / 19

Motivation

C

DTN

Architecture

Demo

Demo

Warning: Experimental Prototype!

19/19

Future Work

- · General code quality, documentation, and testing
- Automated unit and functional tests
- Simulation framework
- P2P bootstrap implementation and analysis
- NAT traversal for the P2P transport
- Structured P2P implementation with efficient broadcast
- Integration into DTN standards (RFC 4838 ...)
- Research into partial replication
- Robust thumb drive storage formats
- Steganography and cryptography
- Ports to other platforms, in particular android, *BSD, iOS, Mac OS X, WebOS, Windows, Windows Phone

Future Work (continued)

- Project search functionality
- User Management
- Extend functionality of the main policy drafting application
 - A WYSIWYG editor
 - Comments to specific lines or paragraphs (→ Julius Römmler)
 - Better usability
- · Demonstrate and develop a client-side application
- Prototype browser-to-browser P2P with WebRTC
- Create a decentralized security framework
- · Allow closed groups as well as read-only ones
- Allow voting applications
- Extend revision control
 - Integrate graph- and/or patch-based revision control systems
 - Improve the CAS performance
- Integration with other platforms (such as adhocracy)
- Integration with PKIs such as German ID card

- Problem: Where do we store keys
- Browser integration problematic (→ Evgeni Golov, 2012)
- Option: private key = hash(password)

HEINRICH HEINE

Security

- Problem: Where do we store keys
- Browser integration problematic (\rightarrow Evgeni Golov, 2012)
- Option: private key = hash(password)
- ∀ project:
 - Project ID = hash(project public key, security specification)
 - Allow private projects by encrypting everything with a symmetric key
 - Symetric key is stored alongside project data, encrypted with users' public keys

HEINRICH HEINE

Security

- Problem: Where do we store keys
- Browser integration problematic (→ Evgeni Golov, 2012)
- Option: private key = hash(password)
- ∀ project:
 - Project ID = hash(project public key, security specification)
 - Allow private projects by encrypting everything with a symmetric key
 - Symetric key is stored alongside project data, encrypted with users' public keys
 - Allow read-only projects by requiring changes to be signed by a key ...
 - ... which in turn is signed by the project's key

Voting

- Distributed verifiable anonymous voting is not possible!
- Requires trusted intermediaries
- Or trusted voting registrars

Extended Threat Model

- Assumption so far: User can run arbitrary software on her device.
- Assumption: User has access to a device
- Assumption: User controls (general-purpose) device.
 - May be restricted with UEFI Secure Boot
 - Signed firmware required on Apple iPad, iPhone, iPod
 - Signed firmware required on some android devices
- Attacker may also physically go after users
 - ⇒ Anonymity/Pseudonimity required

Extended Threat Model

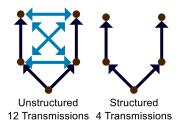
- Assumption so far: User can run arbitrary software on her device.
- Assumption: User has access to a device
- Assumption: User controls (general-purpose) device.
 - May be restricted with UEFI Secure Boot
 - Signed firmware required on Apple iPad, iPhone, iPod
 - Signed firmware required on some android devices
- Attacker may also physically go after users
 - Anonymity/Pseudonimity required
- Attacker can use malware to gain control of the device
 - Happened in Germany: Staatstrojaner
 - Blackberry malware in UAE

DPI in China

- Chinese network-level DPI searches for keywords like falun gong
- Injects an RST packet
- · Blocks all packets between the peers for a couple of minutes

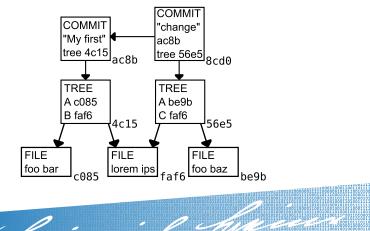
192.168.1.13	192.168.1.1	DNS	70 Standard query A pku.edu.cn
192.168.1.13	192.168.1.1	DNS	70 Standard query AAAA pku.edu.cn
192.168.1.1	192.168.1.13	DNS	120 Standard query response
192.168.1.1	192.168.1.13	DNS	102 Standard query response A 162.105.129.21 A 162.10
192.168.1.13	162.105.129.21	TCP	74 56558 > http [SYN] Seq=0 Win=14600 Len=0 MSS=1460
162.105.129.21	192.168.1.13	TCP	58 http > 56558 [SYN, ACK] Seq=0 Ack=1 Win=3840 Len=
192.168.1.13	162.105.129.21	TCP	54 56558 > http [ACK] Seq=1 Ack=1 Win=14600 Len=0
192.168.1.13	162.105.129.21	HTTP	128 HEAD /faluX_gXng HTTP/1.1
162.105.129.21	192.168.1.13	TCP	54 http > 56558 [ACK] Seq=1 Ack=75 Win=5840 Len=0
162.105.129.21	192.168.1.13	TCP	259 [TCP segment of a reassembled PDU]
192.168.1.13	162.105.129.21	TCP	54 56558 > http [ACK] Seq=75 Ack=206 Win=15544 Len=0
192.168.1.13	162.105.129.21	HTTP	128 HEAD /falun_gong HTTP/1.1
162.105.129.21	192.168.1.13	TCP	54 http > 56558 [RST, ACK] Seq=206 Ack=149 Win=1923

P2P: Structured vs Unstructured

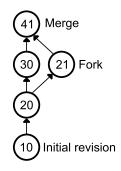


- Structured networks are stable
- But may be easier to disrupt!

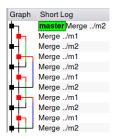
P2P: Structured vs Unstructured


- Structured networks are stable
- But may be easier to disrupt!
- · Broadcasting much more efficient in structured networks

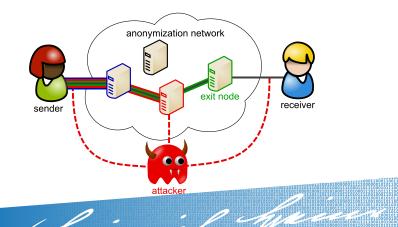
Graph-based Revision Control Systems


- · Every file, tree, commit is mapped to a block of content
- Block is stored in a CAS
- Accessible only by hash (block)

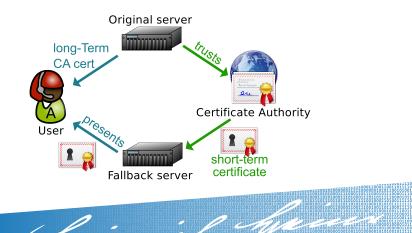
Terms in Revision Control Systems


- Every change is recorded in a commit
- Commits form a DAG:

Problems in Graph-based Revision Control Systems


- Assumption: Always one common HEAD
- Problem: **D**elays mean that automatic merging can go on forever

Anonymization Frameworks


- Use a user-chosen combination of mixes
- Tor (bidirectional, TCP-like)
- I2P (unidirectional, UDP-like)
- GnuNet (only storage)

Web Fallback Verification

- Problem: What if attacker compromises a server?
- Solution: Short-term certificates
- · CA(might be blocked) does never interact with user

Implementation Considerations

• Code (especially views) must be portable

- Required for offline version (→ Tim van Cleef)
- We may also want to reimplement/compiler the application for the browser
- Mustache: Logic-less web templates

Implementation Considerations

- Code (especially views) must be portable
 - Required for offline version (\rightarrow Tim van Cleef)
 - We may also want to reimplement/compiler the application for the browser
 - Mustache: Logic-less web templates
- Python 3 for clean code (Why not 2? bytes vs string)
- Tornado as asynchronous framework
- Modern web technologies (WebSocket, WebRTC, HTML5 semantic elements)
- Automated tests, simulation

Screenshots (1)

nprove User Interface (newest revision) - d2p on t4.phihag.de:2	180 @Actions			
Project List Default View DocumentDB View CAS View	Ping all Settings			
Improve User Interface The current user interface is not ergonomic, and has many needless graphical artifacts.				
We should simplify the user interface, allow easier design modification, and pay attention to detail. Additionally, usability tests would be nice.				
Edit 3 revisions	Projects			
Comments				
vlaybe we should hire a designer?				
As a first step, we should ban technical information into technical menus				
Comments should contain more metadata (time, user name, etc.). We should also think about visual cues for dividers between comments.				

100 000100

Screenshots (2)

C (0 t4 phihag.de:2180/?#/_transports/dtn/56660b8d4d775cdf268ac8f196515a8a9d4ff1433d09cec47e842896a1b6ff68/	☆ 😌 🛈 🏶 🔾		
ranscend (/dev/sdb1) - DTN endpoint - d2p on t4.phihag.de:2180	Actions Ping all		
Back to Transport Overview			
Transcend (/dev/sdb1) Disable	Settings Outage DTN		
Projects	P2P		
• d Import	Projects		
• a			
+ b Import			
₊c Import			
Preject X			